Lab 6.1.4 Using CIDR to Ensure Route Summarization

Step 1: Cable and configure the network
Referring to the topology diagram, connect the console (or rollover) cable to the console port on the router and the other cable end to the host computer with a DB-9 or DB-25 adapter to the COM 1 port. Ensure that power has been applied to both the host computer and router.

Step 2: Perform basic router configurations
Establish a HyperTerminal, or other terminal emulation program, from PC1 to each of the three routers in turn and perform the following configuration functions:
Clear any existing configurations on the routers.
Configure the router hostname.
Disable DNS lookup.
Configure an EXEC mode password.
Configure a message-of-the-day banner.
Configure a password for console connections.
Configure a password for vty connections.

Step 3: Configure the interfaces on the three routers
Configure the interfaces on the three routers with the IP addresses from the table.
Save the running configuration to the NVRAM of the router.

Step 4: Configure the Ethernet interfaces
Configure the Ethernet interfaces of Hosts PC1, PC2, and PC3 with the IP addresses from the addressing
table provided under the topology diagram.

Step 5: Verify connectivity of routers
Verify that each router can ping each of the neighboring routers across the WAN links. You should not have connectivity between end devices yet. However, you can test connectivity between two routers and between an end device and its default gateway. Troubleshoot if connectivity is not achieved.

Step 6: Verify connectivity of Host PCs
Verify that PC1, PC2, and PC3 can ping their respective default gateways. Troubleshoot if connectivity is not achieved.

Step 7: Configure EIGRP routing on router R1
Consider the networks that need to be included in the EIGRP updates that are sent out by the R1 router.
What directly connected networks exist on R1?
_____________ 172.17.0.0
_____________ 172.18.0.0
_____________ 172.19.0.0
What commands are required to enable EGIRP and include the connected networks in the routing updates?
_____________ router eigrp 1
_____________ network 172.17.0.0
_____________ network 172.18.0.0
_____________ network 172.19.0.0
Are there any router interfaces that do not need to have EIGRP updates sent out? ____Ya
If yes, which ones? ________ Fa0/0 and Fa0/1
What command is used to disable EIGRP updates on these interfaces?
passive-interface FastEthernet0/0 and passive-interface FastEthernet0/1

Step 8: Configure EIGRP on router R2
Consider the networks that need to be included in the EIGRP updates that are sent out by the R2 router.
What directly connected networks exist on R2?
_____________ 172.16.0.0
_____________ 172.17.0.0
______________ 172.20.0.0
What commands are required to enable EGIRP and include the connected networks in the routing updates?
______________ router eigrp 1
______________ network 172.16.0.0
______________ network 172.17.0.0
______________ network 172.20.0.0
Are there any router interfaces that do not need to have EIGRP updates sent out? ____Ya
If yes, which ones? ______ Fa0/0 and Fa0/1
What command is used to disable EIGRP updates on these interfaces?
______________ passive-interface FastEthernet0/0

Step 9: Configure EIGRP routing on the R3 router
Consider the networks that need to be included in the EIGRP updates that are sent out by the R3 router.
What directly connected networks exist on R3?
______________ 172.20.0.0
______________ 10.1.0.0
What commands are required to enable EGIRP and include the connected networks in the routing updates?
______________ router eigrp 1
______________ network 172.20.0.0
______________ network 10.1.0.0
Are there any router interfaces that do not need to have EIGRP updates sent out? ___ Ya
If yes, which ones? ________ Fa0/0 and Fa0/1
What command is used to disable EIGRP updates on these interfaces?
_______________ passive-interface FastEthernet0/0

Step 10: Verify the configurations
Ping between devices to confirm that each router can reach each device on the network and that there is
connectivity between all the PCs. If any of the above pings failed, check your physical connections and configurations. Troubleshoot until connectivity is achieved.

Step 11: Display the EIGRP routing table for each router
Are there summary routes in any of the routing tables? ____ Ya, tetapi hanya untuk jaringan 10.1.0.0. Auto-summary EIGRP diaktifkan secara default dan merangkum subnetwork 10.1.0.0/16 ke jaringan 10.0.0.0 / 8 classful.
Are there any summary routes for the 172.x.0.0 networks? ____Tidak

Step 12: Remove automatic summarization
On each of the three routers, remove automatic summarization to force EIGRP to report all subnets. A sample command is given for R1.
R1(config)#router eigrp 1
R1(config-router)#no auto-summary

Step 13: Configure manual summarization on R2
On R2, configure manual summarization so that EIGRP summarizes the four networks 172.16.0.0/16,
172.17.0.0/16, 172.18.0.0/16, and 172.19.0.0/16 as one CIDR route, or 172.16.0.0/14.
You are summarizing multiple classful networks, which creates a supernet, and results in a classless (/14)
network address being advertised.
R2(config)#interface s0/0/1
R2(config-if)#ip summary-address eigrp 1 172.16.0.0 255.252.0.0

Step 14: Confirm that R2 is advertising a CIDR summary route
Examine the routing table of each router using the show ip route command.
R1#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static
route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set
C 172.17.0.0/16 is directly connected, Serial0/0/0
D 172.16.0.0/16 [90/2172416] via 172.17.0.2, 02:13:05, Serial0/0/0
C 172.19.0.0/16 is directly connected, Loopback0
C 172.18.0.0/16 is directly connected, FastEthernet0/0
D 172.20.0.0/16 [90/2681856] via 172.17.0.2, 02:05:21, Serial0/0/0
10.0.0.0/16 is subnetted, 1 subnets
D 10.1.0.0 [90/2684416] via 172.17.0.2, 00:04:25, Serial0/0/0
R2#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static
route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set
C 172.17.0.0/16 is directly connected, Serial0/0/0
C 172.16.0.0/16 is directly connected, FastEthernet0/0
D 172.19.0.0/16 [90/2172416] via 172.17.0.1, 02:14:37, Serial0/0/0
D 172.18.0.0/16 [90/2172416] via 172.17.0.1, 02:14:37, Serial0/0/0
C 172.20.0.0/16 is directly connected, Serial0/0/1
10.0.0.0/16 is subnetted, 1 subnets
D 10.1.0.0 [90/2172416] via 172.20.0.1, 00:05:57, Serial0/0/1
D 172.16.0.0/14 is a summary, 00:11:55, Null0
R3#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static
route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set
C 172.20.0.0/16 is directly connected, Serial0/0/1
10.0.0.0/16 is subnetted, 1 subnets
C 10.1.0.0 is directly connected, FastEthernet0/0
D 172.16.0.0/14 [90/2172416] via 172.20.0.2, 00:13:32, Serial0/0/1
Which router has a summarized route to the 172.x.0.0 networks in its routing table? __________ R3
D 172.16.0.0/14 [90/2172416] via 172.20.0.2, 00:13:32, Serial0/0/1

Step 15: Clean up
Erase the configurations and reload the routers. Disconnect and store the cabling. For PC hosts that are
normally connected to other networks (such as the school LAN or to the Internet), reconnect the appropriate cabling and restore the TCP/IP settings.
Reflection
In this lab, automatic summarization was used. Could route summarization still be applied if more effective use of the IPv4 address space had been made by using VLSM for those networks requiring fewer addresses, such as the serial links between routers?

Komentar

Postingan populer dari blog ini

Lab 4.2.5.5 Calculating a VLSM Addressing Scheme

Lab 5.2.3 Configuring RIPv2 with VLSM, and Default Route Propagation

Lab 7.3.3 Configuring and Testing the Rapid Spanning Tree Prototype